3. Linear programs

- Review: linear algebra
- Geometrical intuition
- Standard form for LPs
- Example: transformation to standard form

Matrix basics

A matrix is an array of numbers. $A \in \mathbb{R}^{m \times n}$ means that:

$$
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]
$$

(m rows and n columns)

Two matrices can be multiplied if inner dimensions agree:

$$
\underset{(m \times p)}{C}=\underset{(m \times n)(n \times p)}{A} \underset{c^{\prime}}{B} \quad \text { where } \quad c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Example:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{ll}
4 & 3 \\
8 & 9
\end{array}\right]=\left[\begin{array}{ll}
1 \cdot 4+2 \cdot 8 & 1 \cdot 3+2 \cdot 9 \\
3 \cdot 4+4 \cdot 8 & 3 \cdot 3+4 \cdot 9 \\
5 \cdot 4+6 \cdot 8 & 5 \cdot 3+6 \cdot 9
\end{array}\right]=\left[\begin{array}{ll}
20 & 21 \\
44 & 45 \\
68 & 69
\end{array}\right]
$$

Matrix basics

A matrix is an array of numbers. $A \in \mathbb{R}^{m \times n}$ means that:

$$
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]
$$

(m rows and n columns)

Two matrices can be multiplied if inner dimensions agree:

$$
\underset{(m \times p)}{C}=\underset{(m \times n)(n \times p)}{A} \underset{c^{\prime}}{B} \quad \text { where } \quad c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Example:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{ll}
4 & 3 \\
8 & 9
\end{array}\right]=\left[\begin{array}{ll}
1 \cdot 4+2 \cdot 8 & 1 \cdot 3+2 \cdot 9 \\
3 \cdot 4+4 \cdot 8 & 3 \cdot 3+4 \cdot 9 \\
5 \cdot 4+6 \cdot 8 & 5 \cdot 3+6 \cdot 9
\end{array}\right]=\left[\begin{array}{ll}
20 & 21 \\
44 & 45 \\
68 & 69
\end{array}\right]
$$

Matrix basics

Transpose: The transpose operator A^{\top} swaps rows and columns. If $A \in \mathbb{R}^{m \times n}$ then $A^{\top} \in \mathbb{R}^{n \times m}$ and $\left(A^{\top}\right)_{i j}=A_{j i}$.

- $\left(A^{\mathrm{T}}\right)^{\mathrm{T}}=A$
- $(A B)^{\top}=B^{\top} A^{\top}$

A vector is a column matrix. We write $x \in \mathbb{R}^{n}$ to mean that:

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \quad \text { (a vector } x \in \mathbb{R}^{n} \text { is an } n \times 1 \text { matrix) }
$$

The transpose of a column vector is a row vector:

$$
x^{\top}=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right] \quad \text { (i.e. a } 1 \times n \text { matrix) }
$$

Matrix basics

Two vectors $x, y \in \mathbb{R}^{n}$ can be multiplied together in two ways. Both are valid matrix multiplications:

- inner product: produces a scalar.

$$
x^{\top} y=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

Also called "dot product". Often written $x \cdot y$ or $\langle x, y\rangle$.

- outer product: produces an $n \times n$ matrix.

$$
x y^{\top}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]\left[\begin{array}{lll}
y_{1} & \cdots & y_{n}
\end{array}\right]=\left[\begin{array}{ccc}
x_{1} y_{1} & \ldots & x_{1} y_{n} \\
\vdots & \ddots & \vdots \\
x_{n} y_{1} & \ldots & x_{n} y_{n}
\end{array}\right]
$$

Matrix basics

- Matrices and vectors can be stacked and combined to form bigger matrices as long as the dimensions agree. e.g. If $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$, then $X=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{m}\end{array}\right] \in \mathbb{R}^{m \times n}$.
- Matrices can also be concatenated in blocks. For example:

$$
Y=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \quad \begin{aligned}
& \text { if } A, C \text { have same number of columns, } \\
& A, B \text { have same number of rows, etc. }
\end{aligned}
$$

- Matrix multiplication also works with block matrices!

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
P \\
Q
\end{array}\right]=\left[\begin{array}{l}
A P+B Q \\
C P+D Q
\end{array}\right]
$$

as long as A has as many columns as P has rows, etc.

Linear and affine functions

- A function $f\left(x_{1}, \ldots, x_{m}\right)$ is linear in the variables x_{1}, \ldots, x_{m} if there exist constants a_{1}, \ldots, a_{m} such that

$$
f\left(x_{1}, \ldots, x_{m}\right)=a_{1} x_{1}+\cdots+a_{m} x_{m}=a^{\top} x
$$

- A function $f\left(x_{1}, \ldots, x_{m}\right)$ is affine in the variables x_{1}, \ldots, x_{m} if there exist constants b, a_{1}, \ldots, a_{m} such that

$$
f\left(x_{1}, \ldots, x_{m}\right)=a_{0}+a_{1} x_{1}+\cdots+a_{m} x_{m}=a^{\top} x+b
$$

Examples:

1. $3 x-y$ is linear in (x, y).
2. $2 x y+1$ is affine in x and y but not in (x, y).
3. $x^{2}+y^{2}$ is not linear or affine.

Linear and affine functions

Several linear or affine functions can be combined:

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}+b_{1} \\
a_{21} x_{1}+\cdots+a_{2 n} x_{n}+b_{2} \\
\vdots \vdots \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}+b_{m}
\end{gathered} \Longrightarrow\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]
$$

which can be written simply as $A x+b$. Same definitions apply:

- A vector-valued function $F(x)$ is linear in x if there exists a constant matrix A such that $F(x)=A x$.
- A vector-valued function $F(x)$ is affine in x if there exists a constant matrix A and vector b such that $F(x)=A x+b$.

Geometry of affine equations

- The set of points $x \in \mathbb{R}^{n}$ that satisfies a linear equation $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$ (or $a^{\top} x=0$) is called a hyperplane. The vector a is normal to the hyperplane.
- If the right-hand side is nonzero: $a^{\top} x=b$, the solution set is called an affine hyperplane, (it's a shifted hyperplane).

Affine hyperplane in 2D

Affine hyperplane in 3D

Geometry of affine equations

- The set of points $x \in \mathbb{R}^{n}$ satisfying many linear equations $a_{i 1} x_{1}+\cdots+a_{i m} x_{n}=0$ for $i=1, \ldots, m($ or $A x=0)$ is called a subspace (the intersection of many hyperplanes).
- If the right-hand side is nonzero: $A x=b$, the solution set is called an affine subspace, (it's a shifted subspace).

Intersections of affine hyperplanes are affine subspaces.

Geometry of affine equations

The dimension of a subspace is the number of independent directions it contains. A line has dimension 1, a plane has dimension 2, and so on.

Hyperplanes are subspaces!

- A hyperplane in \mathbb{R}^{n} is a subspace of dimension $n-1$.
- The intersection of k hyperplanes has dimension at least $n-k$ ("at least" because of potential redundancy).

Affine combinations

If $x, y \in \mathbb{R}^{n}$, then the combination

$$
w=\alpha x+(1-\alpha) y \quad \text { for some } \alpha \in \mathbb{R}
$$

is called an affine combination.

If $A x=b$ and $A y=b$, then $A w=b$. So affine combinations of points in an (affine) subspace also belong to the subspace.

Affine combinations

If $x, y \in \mathbb{R}^{n}$, then the combination

$$
w=\alpha x+(1-\alpha) y \quad \text { for some } \alpha \in \mathbb{R}
$$

is called an affine combination. Equivalently:

If $A x=b$ and $A y=b$, then $A w=b$. So affine combinations of points in an (affine) subspace also belong to the subspace.

Convex combinations

If $x, y \in \mathbb{R}^{n}$, then the combination

$$
w=\alpha x+(1-\alpha) y \quad \text { for some } 0 \leq \alpha \leq 1
$$

is called a convex combination (for reasons we will learn later). It's the line segment that connects x and y.

Geometry of affine inequalities

- The set of points $x \in \mathbb{R}^{n}$ that satisfies a linear inequality $a_{1} x_{1}+\cdots+a_{n} x_{n} \leq b$ (or $a^{\top} x \leq b$) is called a halfspace. The vector a is normal to the halfspace and b shifts it.
- Define $w=\alpha x+(1-\alpha) y$ where $0 \leq \alpha \leq 1$. If $a^{\top} x \leq b$ and $a^{\top} y \leq b$, then $a^{\top} w \leq b$.

Halfspace

Geometry of affine inequalities

- The set of points $x \in \mathbb{R}^{n}$ satisfying many linear inequalities $a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \leq b_{i}$ for $i=1, \ldots, m$ (or $A x \leq b$) is called a polyhedron (the intersection of many halfspaces). Some sources use the term polytope instead.
- As before: let $w=\alpha x+(1-\alpha) y$ where $0 \leq \alpha \leq 1$. If $A x \leq b$ and $A y \leq b$, then $A w \leq b$.

Intersections of halfspaces are polyhedra.

Solutions of an LP

There are exactly three possible cases:

1. Model is infeasible: there is no x that satisfies all the constraints.
(is the model correct?)
2. Model is feasible, but unbounded: the cost function can be arbitrarily improved. (forgot a constraint?)
3. Model has a solution which occurs on the boundary of the set. (there may be many solutions!)

infeasible

unbounded

boundary

The linear program

A linear program is an optimization model with:

- real-valued variables $\left(x \in \mathbb{R}^{n}\right)$
- affine objective function $\left(c^{\top} x+d\right)$, can be min or max.
- constraints may be:
- affine equations $(A x=b)$
- affine inequalities $(A x \leq b$ or $A x \geq b)$
- combinations of the above
- individual variables may have:
- box constraints $\left(p \leq x_{i}\right.$, or $x_{i} \leq q$, or $\left.p \leq x_{i} \leq q\right)$
- no constraints (x_{i} is unconstrained)

There are many equivalent ways to express the same LP

Standard form

- Every LP can be put in the form:

$$
\begin{aligned}
\underset{x \in \mathbb{R}^{n}}{\operatorname{maximize}} & c^{\top} x \\
\text { subject to: } & A x \leq b \\
& x \geq 0
\end{aligned}
$$

- This is called the standard form of a LP.

Back to Top Brass

This is in standard form, with:

$$
A=\left[\begin{array}{ll}
4 & 2 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
4800 \\
1750 \\
1000 \\
1500
\end{array}\right], \quad c=\left[\begin{array}{c}
12 \\
9
\end{array}\right], \quad x=\left[\begin{array}{l}
f \\
s
\end{array}\right]
$$

Transformation tricks

1. converting min to max or vice versa (take the negative):

$$
\min _{x} f(x)=-\max _{x}(-f(x))
$$

2. reversing inequalities (flip the sign):

$$
A x \leq b \quad \Longleftrightarrow \quad(-A) x \geq(-b)
$$

3. equalities to inequalities (double up):

$$
f(x)=0 \quad \Longleftrightarrow \quad f(x) \geq 0 \quad \text { and } \quad f(x) \leq 0
$$

4. inequalities to equalities (add slack):

$$
f(x) \leq 0 \quad \Longleftrightarrow \quad f(x)+s=0 \quad \text { and } \quad s \geq 0
$$

Transformation tricks

5. unbounded to bounded (add difference):

$$
x \in \mathbb{R} \quad \Longleftrightarrow \quad u \geq 0, \quad v \geq 0, \quad \text { and } \quad x=u-v
$$

6. bounded to unbounded (convert to inequality):

$$
p \leq x \leq q \quad \Longleftrightarrow \quad\left[\begin{array}{c}
1 \\
-1
\end{array}\right] x \leq\left[\begin{array}{c}
q \\
-p
\end{array}\right]
$$

7. bounded to nonnegative (shift the variable)

$$
p \leq x \leq q \quad \Longleftrightarrow \quad 0 \leq(x-p) \quad \text { and } \quad(x-p) \leq(q-p)
$$

More complicated example

Convert the following LP to standard form:

$$
\begin{array}{rr}
\underset{p, q}{\operatorname{minimize}} & p+q \\
\text { subject to: } & 5 p-3 q=7 \\
& 2 p+q \geq 2 \\
& 1 \leq q \leq 4
\end{array}
$$

notebook: Standard Form.ipynb

More complicated example

Equivalent LP (standard form):

$$
\begin{array}{rlrl}
\underset{u, v, w}{\operatorname{maximize}} & -u+v-w \\
\text { subject to: } & -5 u+5 v+3 w & \leq-10 \\
& 5 u-5 v-3 w & \leq 10 \\
-2 u+2 v-w & \leq-1 \\
& w & \leq 3 \\
& u, v, w & \geq 0
\end{array}
$$

where: $p:=u-v, \quad q:=w+1$
and: $($ original cost $)=-($ new cost $)+1$

