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Matrix basics
A matrix is an array of numbers. A ∈ Rm×n means that:

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 (m rows and n columns)

Two matrices can be multiplied if inner dimensions agree:

C
(m×p)

= A
(m×n)

B
(n×p)

where cij =
n∑

k=1

aikbkj

Example:1 2
3 4
5 6

[4 3
8 9

]
=

1 · 4 + 2 · 8 1 · 3 + 2 · 9
3 · 4 + 4 · 8 3 · 3 + 4 · 9
5 · 4 + 6 · 8 5 · 3 + 6 · 9

 =

20 21
44 45
68 69
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Matrix basics

Transpose: The transpose operator AT swaps rows and
columns. If A ∈ Rm×n then AT ∈ Rn×m and (AT)ij = Aji .

� (AT)T = A

� (AB)T = BTAT

A vector is a column matrix. We write x ∈ Rn to mean that:

x =

x1...
xn

 (a vector x ∈ Rn is an n × 1 matrix)

The transpose of a column vector is a row vector:

xT =
[
x1 · · · xn

]
(i.e. a 1× n matrix)
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Matrix basics
Two vectors x , y ∈ Rn can be multiplied together in two ways.
Both are valid matrix multiplications:

� inner product: produces a scalar.

xTy =
[
x1 · · · xn

] y1...
yn

 = x1y1 + · · ·+ xnyn

Also called “dot product”. Often written x · y or 〈x , y〉.
� outer product: produces an n × n matrix.

xyT =

x1...
xn

 [y1 · · · yn
]

=

x1y1 . . . x1yn
...

. . .
...

xny1 . . . xnyn
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Matrix basics

� Matrices and vectors can be stacked and combined to form
bigger matrices as long as the dimensions agree. e.g. If
x1, . . . , xm ∈ Rn, then X =

[
x1 x2 . . . xm

]
∈ Rm×n.

� Matrices can also be concatenated in blocks. For example:

Y =

[
A B
C D

]
if A, C have same number of columns,
A, B have same number of rows, etc.

� Matrix multiplication also works with block matrices![
A B
C D

] [
P
Q

]
=

[
AP + BQ
CP + DQ

]
as long as A has as many columns as P has rows, etc.
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Linear and affine functions

� A function f (x1, . . . , xm) is linear in the variables
x1, . . . , xm if there exist constants a1, . . . , am such that

f (x1, . . . , xm) = a1x1 + · · ·+ amxm = aTx

� A function f (x1, . . . , xm) is affine in the variables
x1, . . . , xm if there exist constants b, a1, . . . , am such that

f (x1, . . . , xm) = a0 + a1x1 + · · ·+ amxm = aTx + b

Examples:

1. 3x − y is linear in (x , y).

2. 2xy + 1 is affine in x and y but not in (x , y).

3. x2 + y 2 is not linear or affine.

Some texts use “linear”
to mean either one!
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Linear and affine functions

Several linear or affine functions can be combined:

a11x1+ · · ·+ a1nxn + b1

a21x1+ · · ·+ a2nxn + b2
...

...
...

am1x1+ · · ·+ amnxn + bm

=⇒

a11 . . . a1n
...

. . .
...

am1 . . . amn


x1...
xn

+

b1...
bm



which can be written simply as Ax + b. Same definitions apply:

� A vector-valued function F (x) is linear in x if there exists a
constant matrix A such that F (x) = Ax .

� A vector-valued function F (x) is affine in x if there exists a
constant matrix A and vector b such that F (x) = Ax + b.
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Geometry of affine equations

� The set of points x ∈ Rn that satisfies a linear equation
a1x1 + · · ·+ anxn = 0 (or aTx = 0) is called a hyperplane.
The vector a is normal to the hyperplane.

� If the right-hand side is nonzero: aTx = b, the solution set
is called an affine hyperplane, (it’s a shifted hyperplane).

a

Affine hyperplane in 2D Affine hyperplane in 3D
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Geometry of affine equations

� The set of points x ∈ Rn satisfying many linear equations
ai1x1 + · · ·+ aimxn = 0 for i = 1, . . . ,m (or Ax = 0) is
called a subspace (the intersection of many hyperplanes).

� If the right-hand side is nonzero: Ax = b, the solution set
is called an affine subspace, (it’s a shifted subspace).

Intersections of affine hyperplanes are affine subspaces.
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Geometry of affine equations

The dimension of a subspace is the number of independent
directions it contains. A line has dimension 1, a plane has
dimension 2, and so on.

Hyperplanes are subspaces!

� A hyperplane in Rn is a subspace of dimension n − 1.

� The intersection of k hyperplanes has dimension at least
n − k (“at least” because of potential redundancy).
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Affine combinations

If x , y ∈ Rn, then the combination

w = αx + (1− α)y for some α ∈ R

is called an affine combination.

x

y

αx + (1− α)y

0

If Ax = b and Ay = b, then Aw = b. So affine combinations
of points in an (affine) subspace also belong to the subspace.
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Affine combinations

If x , y ∈ Rn, then the combination

w = αx + (1− α)y for some α ∈ R

is called an affine combination. Equivalently:

x

y

y + α(x − y)

0

If Ax = b and Ay = b, then Aw = b. So affine combinations
of points in an (affine) subspace also belong to the subspace.
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Convex combinations

If x , y ∈ Rn, then the combination

w = αx + (1− α)y for some 0 ≤ α ≤ 1

is called a convex combination (for reasons we will learn
later). It’s the line segment that connects x and y .

x

y

αx + (1− α)y

0
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Geometry of affine inequalities

� The set of points x ∈ Rn that satisfies a linear inequality
a1x1 + · · ·+ anxn ≤ b (or aTx ≤ b) is called a halfspace.
The vector a is normal to the halfspace and b shifts it.

� Define w = αx + (1− α)y where 0 ≤ α ≤ 1.
If aTx ≤ b and aTy ≤ b, then aTw ≤ b.

a

Halfspace
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Geometry of affine inequalities
� The set of points x ∈ Rn satisfying many linear inequalities
ai1x1 + · · ·+ ainxn ≤ bi for i = 1, . . . ,m (or Ax ≤ b) is
called a polyhedron (the intersection of many halfspaces).
Some sources use the term polytope instead.

� As before: let w = αx + (1− α)y where 0 ≤ α ≤ 1.
If Ax ≤ b and Ay ≤ b, then Aw ≤ b.

Intersections of halfspaces are polyhedra.
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Solutions of an LP

There are exactly three possible cases:

1. Model is infeasible: there is no x
that satisfies all the constraints.
(is the model correct?)

2. Model is feasible, but unbounded:
the cost function can be arbitrarily
improved. (forgot a constraint?)

3. Model has a solution which occurs
on the boundary of the set.
(there may be many solutions!)

infeasible

unbounded

boundary
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The linear program

A linear program is an optimization model with:

� real-valued variables (x ∈ Rn)

� affine objective function (cTx + d), can be min or max.

� constraints may be:
I affine equations (Ax = b)

I affine inequalities (Ax ≤ b or Ax ≥ b)

I combinations of the above

� individual variables may have:
I box constraints (p ≤ xi , or xi ≤ q, or p ≤ xi ≤ q)

I no constraints (xi is unconstrained)

There are many equivalent ways to express the same LP
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Standard form

� Every LP can be put in the form:

maximize
x∈Rn

cTx

subject to: Ax ≤ b

x ≥ 0

� This is called the standard form of a LP.
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Back to Top Brass

max
f ,s

12f + 9s

s.t. 4f + 2s ≤ 4800

f + s ≤ 1750

0 ≤ f ≤ 1000

0 ≤ s ≤ 1500

=⇒

max
f ,s

[
12
9

]T [
f
s

]

s.t.

4 2
1 1
1 0
0 1

[fs
]
≤

4800
1750
1000
1500


[
f
s

]
≥ 0

This is in standard form, with:

A =


4 2
1 1
1 0
0 1

 , b =


4800
1750
1000
1500

 , c =

[
12
9

]
, x =

[
f
s

]
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Transformation tricks

1. converting min to max or vice versa (take the negative):

min
x

f (x) = −max
x

(−f (x))

2. reversing inequalities (flip the sign):

Ax ≤ b ⇐⇒ (−A)x ≥ (−b)

3. equalities to inequalities (double up):

f (x) = 0 ⇐⇒ f (x) ≥ 0 and f (x) ≤ 0

4. inequalities to equalities (add slack):

f (x) ≤ 0 ⇐⇒ f (x) + s = 0 and s ≥ 0
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Transformation tricks

5. unbounded to bounded (add difference):

x ∈ R ⇐⇒ u ≥ 0, v ≥ 0, and x = u − v

6. bounded to unbounded (convert to inequality):

p ≤ x ≤ q ⇐⇒
[

1
−1

]
x ≤

[
q
−p

]
7. bounded to nonnegative (shift the variable)

p ≤ x ≤ q ⇐⇒ 0 ≤ (x−p) and (x−p) ≤ (q−p)
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More complicated example

Convert the following LP to standard form:

minimize
p,q

p + q

subject to: 5p − 3q = 7

2p + q ≥ 2

1 ≤ q ≤ 4

notebook: Standard Form.ipynb
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More complicated example

Equivalent LP (standard form):

maximize
u,v ,w

−u + v − w

subject to: −5u + 5v + 3w ≤ −10

5u − 5v − 3w ≤ 10

−2u + 2v − w ≤ −1

w ≤ 3

u, v ,w ≥ 0

where: p := u − v , q := w + 1

and: (original cost) = −(new cost) + 1
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